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Introduction

In this project, we explore the results of the article �On (Kq; k)-Stable Graphs� by Andrzej �ak [4]. Let k be
any nonnegative integer, and let G, H denote any two �nite, simple graphs. We say that G is (H; k)-stable if,
with the removal of any k vertices from G, there remains a subgraph of G that is isomorphic to H. If G is an
(H; k)− stable graph with the fewest possible edges, then the number of edges of G is denoted stab (H; k). In
this paper, Żak considers the case when H is the complete graph, Kq, on q vertices where q is any positive
integer. He shows that, with the exception of some small values of k,

stab (Kq; k) = (2q − 3) (k + 1) ;

con�rming a conjecture of Dudek et al [3]. Furthermore, he characterizes the extremal graphs that meet this
bound.

Graphs

A graph G consists of a �nite vertex set V (G), and edge set E (G) where E (G) is a collection of 2-element
subsets (the edges) of V (G). When {x, y} ∈ E (G) we write x ∼ y. A vertex that does not belong to any edge
is called an isolated vertex. Let the order of G be denoted |G| := |V (G)| and let the size of G be denoted
‖G‖ := |E (G)|. Two graphs G,H are isomorphic if there is a bijection f : V (G)→ V (H) such that u ∼ v if
and only if f (u) ∼ f (v). Let H be any graph and k a non-negative integer. A graph G is called
(H; k)− vertex stable or (H; k)− stable if G contains a subgraph isomorphic to H even after removing any k of
its vertices.

Example 1 The Petersen Graph as a (C5; 2)− stable graph.

The Petersen Graph Illustration of the Petersen Graph
as a (C5; 2)− stable graph.

If G has the minimum size of any (H; k)-stable graph, then ‖G‖ = stab (H; k), and we refer to G as a
minimum (H; k)-stable graph. Note that if H does not have isolated vertices, then after adding to or removing
from a (H; k)− stable graph any number of isolated vertices, we still have an (H; k)− stable graph with the
same size. Thus, we will assume that no such minimum (H, k)-stable graph has isolated vertices.

General Bounds

Lemma 1: If G is a minimum (H; k)− stable graph, then every vertex and every edge of G belongs to some
subgraph of G isomorphic to H.

Proof:

Suppose there is an edge e ∈ E (G) which is not in any subgraph of G isomorphic to H. Then G − e is still
(H; k) − stable with a smaller size than G, which is a contradiction since we were assuming G is minimum. If
there exists a vertex v which is not in any subgraph of G isomorphic to H, then the same is true for each edge
containing v. This again contradicts the minimality of G. �
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The following proposition will give a lower bound on the vertex degrees in G, and will be used frequently
throughout the paper.

Proposition 1: Let δH be the minimum degree of a graph H. Then in any minimum (H; k)− stable graph G,
dG (v) ≥ δH for each vertex v ∈ G.

Proof:

Let G be minimum (H; k)− stable, and let HG be any subgraph of G isomorphic to H. Now assume, by way of
contradiction, that there exists v0 ∈ G such that d (v0) < δH . Note, then, that v0 /∈ V (HG). Then by Lemma 1
we have that G is not minimum, which is a contradiction. �

Theorem 2: If G is any minimum (H; k)− stable graph, then

|G| − δH
∑

v∈V (G)

1

dG (v) + 1
≥ k + 1.

Moreover, if G is not a union of cliques, then the inequality is strict.

Proof:

First note that for all v ∈ V (G), by Proposition 1 we have that dG (v) ≥ δH . Let deg−σ (v) denote the number of
neighbors of v that are on the left of v in ordering σ, where σ is any ordering of the vertices of graph G. Then
let Sσ denote the set of all vertices v with deg−σ (v) ≤ δH −1. What we want to do next is remove from G the set
of vertices in V (G) \ Sσ, inducing a subgraph on Sσ that will contain no copies of H. This will eventually lead
to a bound on k. To fully appreciate the strategy that is being used here, let's look at an example. Consider
our previous example of the Petersen graph, and recall that it was (C5, 2)-stable. Suppose σ is the ordering of
the vertices given below.

Generating a table that tracks the values of deg−σ (vn), we have the following:

n 1 2 3 4 5 6 7 8 9 10

deg−σ (vn) 0 1 1 1 2 1 1 2 3 3

Observe that Sσ :=
{
vi | deg−σ (vi) ≤ 1

}
= {v1, v2, v3, v4, v6, v7}. Hence V (G) \ Sσ := {v5, v8, v9, v10}. Note

that removing V (G) \ Sσ from G yields the following graph:
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Thus we have destroyed all copies of C5. This strategy is clever, in the sense that it is designed to �pick on� the
vertices that have the most �left sided� neighbors of any random permutation. This type of ordering essentially
gives us a way to assign an �weight� to a vertex based on how many neighbors it has to its left in the table.
The higher that weight is, the better candidate it is to remove since each left-neighbor represents an adjacency.
Hence by removing all the vertices with high enough weights (weights ≥ δH) we ensure the fact that no copies
of H will remain once V (G) \ Sσ is removed. For example, the vertices we are left with in the above example
are the vertices that, in the ordering, had only one left-neighbor.

In general, with any ordering we destroy all copies of H by consecutively eliminating all vertices of V (G)\Sσ.
Each vertex in Sσ has left degree ≤ δH − 1 and thus cannot be the rightmost vertex of any copy of H in the
induced subgraph. We started with the assumption that G is (H; k)− stable, thus we get that |G|− |Sσ| ≥ k+ 1
for any ordering σ.

Lemma 2 (Caro and Wei): Let deg−σ (v) denote the number of neighbors of v that are on the left of v in
ordering σ, where σ is any ordering of V (G). Let Sσ denote the set of all vertices v with deg−σ (v) ≤ δH − 1. If
δH = 1, then each set Sσ is an independent set.

Proof:

Note that Sσ :=
{
vi | deg−σ (vi) ≤ 0

}
. So in the ordering σ, each vertex v ∈ Sσ has no left neighbors.

Therefore, Sσ is an independent set. �

We are interested in �nding a way to approximate the size of Sσ for any ordering σ. To do this, we will
implement a method of using an appropriate expected value to capture a lower bound on the size of Sσ.

To further understand the probability we are looking for, let us pick apart an arbitrary ordering of our vertex
set of size n and generate a probability to measure the likelihood that any arbitrary v is an element of Sσ. We
calculate the probability that, under the ordering σ, v has at most i neighbors to its left. We begin with the
choose function (

n
dG (v) + 1

)
,

by selecting dG (v) + 1 slots of the n slots available for placing the vertices.

. . . _ . . . _ . . . _ . . . _ . . . _ . . . _ . . .
↑ ↑ ↑ ↑ ↑ ↑

dG (v) + 1 slots of the n slots available for placing the vertices are chosen.

We now have enough locations to place all v and all of v's neighbors. From here we select the �rst i+ 1 slots.
Note that v can exist in any of these slots and still satisfy our condition that deg−σ (v) ≤ i.

. . . _ . . . _ . . . _ . . . v . . . _ . . . _ . . .
↑ ↑ ↑ ↑ ↑

The vertex v can exist in any of the �rst i+ 1 slots.

At this point we now have the following: (
n

dG (v) + 1

)
(i+ 1) .

From here we need to arrange the remaining vertices, namely the neighbors of v and the non-neighbors of v.
The number of neighbors that v has is determined by its degree. Thus let
NG (v) := {vi ∈ V (G) | vi ∼ v, v 6= vi}. Then |NG (v)| = dG (v) and the number of ways to permute NG (v) is
(dG (v))!. Since we have that v and all of v's neighbors have been arranged in the ordering, we have to place
the remaining vertices which is n vertices minus 1 for having placed v and minus dG (v) for having already
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placed all of v neighbors, hence placing the remaining vertices yields (n− dG (v)− 1)! permutations. Thus we
have the following: (

n
dG (v) + 1

)
(i+ 1) (dG (v))! (n− dG (v)− 1)!,

and have successfully counted all of the permutations where our analyzed vertex has i neighbors to its left
under the ordering of σ. Since we are interested in the probability of this happening, we divide our counted
value by the total number of ways to order n vertices, which is n!. Hence we get that

Pr
(
deg−σ (v) ≤ i

)
=

(
n

dG (v) + 1

)
(i+ 1) (dG (v))! (n− dG (v)− 1)!

n!
.

Reducing this quotient we get:

Pr
(
deg−σ (v) ≤ i

)
=

i+ 1

dG (v) + 1
,

Note that for our construction of Sσ we have that i = δH − 1, thus

i+ 1

dG (v) + 1
=

δH
dG (v) + 1

.

We get from this that

Pr (v ∈ Sσ) =
δH

dG (v) + 1
.

Then by Linearity of Expectation,

E (Sσ) =
∑

v∈V (G)

δH
dG (v) + 1

.

Example 2 of Expected Value; consider the paw graph and all of the permutations on a �xed labeling of its
vertices:

Paw Graph

1234 2134 3124 4123
1243 2143 3142 4132
1342 2314 3214 4213
1324 2341 3241 4231
1432 2413 3412 4312
1423 2431 3421 4321

Permutations on the vertex set {1, 2, 3, 4}.

Let σ be a random permutation of the vertices of the Paw Graph. Let i = 1 and set deg−σ (v) ≤ i where
deg−σ (v) is set to equal the number of left neighbors of v under the ordering of σ. Furthermore, let Sσ :={
v | deg−σ (v) ≤ i

}
. Note that in the above table of all 24 permutations on the vertex set of the paw graph, 20

of them have an ordering such that |Sσ| = 3, and 4 of them have an ordering such that |Sσ| = 2. Then there
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are (20 · 3 + 4 · 2) vertices out of the 24 permutations on the vertex set that satisfy deg−σ (v) ≤ i, or 68/24. Note
that if we calculate the expectation from the formula we get:

E (Sσ) =
∑

v∈V (G)

i+ 1

dG (v) + 1

=
2

1 + 1
+

2

2 + 1
+

2

2 + 1
+

2

3 + 1

=
24

24
+

16

24
+

16

24
+

12

24

=
68

24
.

Now consider all the possibilities of how |Sσ| relates to
∑
v∈V (G)

δH
dG(v)+1 , and furthermore, how it a�ects |G| −

δH
∑
v∈V (G)

1
dG(v)+1 ≥ k + 1. Note that if there exists such an ordering where |Sσ| <

∑
v∈V (G)

δH
dG(v)+1 , then

there must exist an ordering σ′ such that |Sσ′ | >
∑
v∈V (G)

δH
dG(v)+1 , because the expectation is exactly equal to∑

v∈V (G)
δH

dG(v)+1 . This implies that for any ordering σ we can get that |G|− |Sσ| > |G|− δH
∑
v∈V (G)

1
dG(v)+1 ≥

k + 1. Note also that |G| − δH
∑
v∈V (G)

1
dG(v)+1 = k + 1 if for every ordering of σ, |Sσ| is the same. Let us

further consider the scenario where for any ordering of σ, |Sσ| is the same.
Let C be any component of G and let v ∈ V (C). Let δ = δH and let |Sσ| = |Sσ′ | on any ordering of σ.

Consider the following ordering σ of vertices of C:

v1, v2, . . . , vδ, vδ+1, vδ+2, . . . , v|C|.

Let vδ+1 = v and v1, . . . , vδ be neighbors of v. Note that v1, . . . , vδ need not necessarily be all the neighbors of v
since it was assumed that v ∈ V (C) and by Proposition 1 we have that for any v ∈ V (G), dG (v) ≥ δH . From
this ordering on the vertex set we get that deg−σ (vδ+1) = δ. Now consider the ordering σ′ of vertices of C:

vδ+1, v1, v2, . . . , vδ, vδ+2, . . . , v|C|.

By assumption we have that |Sσ| = |Sσ′ |, thus we get that vδ+1 ∈ Sσ′ , vδ /∈ Sσ′ and that deg−σ (vδ) = δ. This
process can be repeated producing the following:

vδ, vδ+1, v1, v2, . . . , vδ−2, vδ−1, vδ+2, . . . , v|C| =⇒ deg−σ (vδ−1) = δ

vδ−1, vδ, vδ+1, v1, . . . , vδ−3, vδ−2, vδ+2, . . . , v|C| =⇒ deg−σ (vδ−2) = δ

vδ−2, vδ−1, vδ, vδ+1, . . . , vδ−3, vδ−2, vδ+2, . . . , v|C| =⇒ deg−σ (vδ−3) = δ

...

v2, v3, v4, v5, . . . , vδ+1, v1, vδ+2, . . . , v|C| =⇒ deg−σ (v1) = δ.

Thus we get that the vertices v1, . . . , vδ+1 induce a clique. Note that v and its neighbors were chosen arbitrarily,
hence {v} ∪NG (v) induce a clique for each v ∈ V (C), it follows that C is a clique. �

Lemma 2: Pick any r > 0 and ` ∈ N. The expression
∑`
j=1

1
xj

with
∑`
j=1 xj = r and xj > 0 is minimal if all

the xj are equal.

Proof:

Let f (x1, . . . , xn) =
∑n
k=1

(
1
xk

)
and let g (x1, . . . , xn) =

∑n
k=1 xk = k where x1, . . . , xn are non-zero numbers

and k > 0. Let fxi
be used to denote the partial derivative of f with respect to xi, and similarly for g. Using

methods of multivariate constrained optimization, we can minimize our variables. Note when solving for the
Lagrange multipliers:
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fx1
(x1, . . . , xn) = λgx1

(x1, . . . , xn)

x−21 = λ

fx2
(x1, . . . , xn) = λgx2

(x1, . . . , xn)

x−22 = λ

...

fxn
(x1, . . . , xn) = λgx2

(x1, . . . , xn)

x−2n = λ,

we get that λ = x−21 = x−22 = · · · = x−2n . We assumed that x1, . . . , xn are non-zero numbers, then the equality
only holds when x1 = x2 = · · · = xn. �

Corollary 3: Let H be any graph and let δH denote the minimum degree of H. Then

stab (H; k) ≥ (k + 1)

(
δH +

√
δH (δH − 1)− 1

2

)
.

Proof:

The corollary implies that we can �nd a lower bound on our minimum stable graphs. To illustrate this let G be
a minimum (H; k)− stable graph. Let δH denote the minimum degree of H and let dG = 2‖G‖

|G| , the average
degree of G.

From Lemma 2 we gain the following inequality:∑
v∈V (G)

1

d (v) + 1
≥

∑
v∈V (G)

1

dG + 1

=
|G|

dG + 1
.

Using this inequality and Theorem 2 we get the following:

|G| ≥ δH
∑

v∈V (G)

1

d (v) + 1
+ k + 1 ≥ |G| δH

dG + 1
+ k + 1.

It follows that:

‖G‖ =

(
dG
2

)
|G| ≥ (k + 1)

2
· dG (dG + 1)

(dG + 1− δH)
.

Let f represent the characteristic polynomial of dG(dG+1)
(dG+1−δH) , in other words, let x = dG and consider the critical

point of the function for when f is at its minimum.

f (x) =
x (x+ 1)

(x+ 1− δH)

f ′ (x) =
(x+ 1− δH) (2x+ 1)− (x (x+ 1))

(x+ 1− δH)
2

Note that we are interested in when f ′ (x) = 0, which only happens when the numerator is equal to 0. This
yields a quadratic polynomial:

(x+ 1− δH) (2x+ 1)− (x (x+ 1)) = 0

x2 + 2x (1− δH) + (1− δH) = 0
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Using the quadratic formula to solve for the roots of the polynomial yields:

x = (−1 + δH)±
√
δH (δH − 1).

Hence we get that x0 = −1 + δH +
√
δH (δH − 1). Plugging x0 back into f and simplifying, we get:

f (x0) =
x0 (x0 + 1)

(x0 + 1− δH)

= 2

(
δH +

√
δH (δH − 1)− 1

2

)
.

Then it follows that

‖G‖ =

(
dG
2

)
|G| ≥ (k + 1)

2
· dG (dG + 1)

(dG + 1− δH)
≥ (k + 1)

(
δH +

√
δH (δH − 1)− 1

2

)
.

Since we had that G was a minimum (H; k)− stable graph, then ‖G‖ = stab (H; k), and

stab (H; k) ≥ (k + 1)

(
δH +

√
δH (δH − 1)− 1

2

)
.�

Thus we have completed a general lower bound of the size of a graph G when it is minimum (H; k)− stable.

Complete Graphs, Kq

With the use of Theorem 2 and Corollary 3, we can start establishing bounds and results for speci�c graphs,
namely, the complete graphs Kq.

Theorem 4: Let G be a (Kq; k)− stable graph, q ≥ 2 and k ≥ 0. Then

‖G‖ ≥ (2q − 3) (k + 1) ,

with equality if and only if G is a disjoint union of cliques K2q−3 and K2q−2.

Proof:

Let G be a (Kq; k)− stable graph, q ≥ 2 and k ≥ 0. Note that δH = (q − 1) then let
xt+ = q − 1 +

√
(q − 1) (q − 2) and xt− = q − 3 +

√
(q − 1) (q − 2). Consider

f ′ (xt+) =
(xt+)

2
+ 2 (xt+) (1− δH) + (1− δH)

((xt+) + 1− δH)
2 ,

which simpli�es to

f ′ (xt+) =
2
√

(q − 1) (q − 2) + 1(√
(q − 1) (q − 2) + 1

)2 .
Note that f ′ (xt+) > 0 for q > 2, then by the �rst derivative test, f is increasing for x ≥ x0. Also consider

f ′ (xt−) =
(xt−)

2
+ 2 (xt−) (1− δH) + (1− δH)

((xt−) + 1− δH)
2 ,

which simpli�es to

f ′ (xt−) =
1− 2

√
(q − 2) (q − 1)(√

(q − 2) (q − 1) + 1
)2 .
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Which for values of q > 2, f ′ (xt−) < 0, thus implying by the �rst derivative test that f is decreasing for
x ≤ x0. To establish the bounds on x0 consider a construction of x0 under the constraint that
x0 = q − 1 +

√
(q − 1) (q − 2)− 1 is when f is at its minimum. Then:

(q − 2) ≤ (q − 2) ≤ (q − 1)

(q − 2) (q − 1) ≤ (q − 2) (q − 1) ≤ (q − 1)
2

(q − 2)
2 ≤ (q − 2) (q − 1) ≤ (q − 1)

2

(q − 2) ≤
√

(q − 2) (q − 1) ≤ (q − 1)

(q − 2) + q − 2 ≤
√

(q − 2) (q − 1) + q − 2 ≤ (q − 1) + q − 2

2q − 4 ≤
√

(q − 2) (q − 1) + q − 2 = x0 ≤ 2q − 3

The bounds for x0 are consecutive integers, moreover we have

f (2q − 4) =
(2q − 4) (2q − 4 + 1)

2q − 4 + 1− (q − 1)

= 2 (2q − 3)

f (2q − 3) =
(2q − 3) (2q − 3 + 1)

2q − 3 + 1− (q − 1)

= 2 (2q − 3) .

Since our characteristic function was derived for when x = dG, it follows that the lower bound on ‖G‖ is
achieved when dG ∈ [2q − 4, 2q − 3]. Since we have that the expression

∑l
j=1

1
xj

with
∑l
j=1 xj = const, xj > 0

is minimal if all the xj are equal, and dG as the average degree of G; then we want the degree of any vertex of
G to not deviate too far from dG, thus minimizing the sum. By assumption we have that G is a
(Kq; k)− stable graph, so it is safe to assume that dG (v) ∈ {2q − 4, 2q − 3}. It can be shown then that the
equality of ‖G‖ ≥ (2q − 3) (k + 1) is strong if and only if G is a disjoint union of cliques K2q−3 and K2q−2. For
this let m denote the number of vertices of G with degree equal to 2q − 3. Note that in corollary 3 the
following was shown:

|G| ≥ δH
∑

v∈V (G)

1

d (v) + 1
+ k + 1 ≥ |G| δH

dG + 1
+ k + 1.

Consider the latter part of the inequality and drop the common factor δH , then its left to show:∑
v∈V (G)

1

d (v) + 1
≥ |G| 1

dG + 1
.

Note that |G| = |G| −m+m, then considering the right hand side of the equation:

|G| 1

dG (v) + 1
= (|G| −m+m)

1

dG (v) + 1

= m
1

dG (v) + 1
+ (|G| −m)

1

dG (v) + 1
.

Because m denotes the number of vertices of G with degree equal to 2q − 3, then

m
1

dG (v) + 1
+ (|G| −m)

1

dG (v) + 1
= m

1

(2q − 3) + 1
+ (|G| −m)

1

(2q − 4) + 1
.

Suppose that dG (v) ∈ {2q − 4, 2q − 3} for every v ∈ V (G), thus we obtain for dG (v) = 2q − 4, m = 0 and:

m
1

dG (v) + 1
+ (|G| −m)

1

dG (v) + 1
= |G| 1

(2q − 4) + 1

=
∑

v∈V (G)

1

(2q − 4) + 1
.
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And for dG (v) = 2q − 3 for every v ∈ V (G), m = |G| and:

m
1

dG (v) + 1
+ (|G| −m)

1

dG (v) + 1
= |G| 1

(2q − 3) + 1

=
∑

v∈V (G)

1

(2q − 3) + 1
.

Now let 0 < m < |G| where the vertex set can be partitioned into two sets, one of vertices of degree equal to
2q − 3, and one set of vertices of degree equal to 2q − 4. Then m = |{v | dG (v) = 2q − 3}| and
|G| −m = |{v | dG (v) = 2q − 4}|

m
1

(2q − 3) + 1
+ (|G| −m)

1

(2q − 4) + 1
=

m∑
i=1

1

(2q − 3) + 1
+

|G|−m∑
i=1

1

(2q − 4) + 1

=

|G|∑
i=1

1

(dG (v)) + 1

=
∑

v∈V (G)

1

(d (v)) + 1
.

To prove the other direction of the �if and only if�, suppose∑
v∈V (G)

1

d (v) + 1
= m

1

2q − 2
+ (|G| −m)

1

2q − 3
=

2 (q − 1) |G| −m
2 (q − 1) (2q − 3)

.

Then ∑
v∈V (G)

1

d (v) + 1
=

2 (q − 1) |G| −m
2 (q − 1) (2q − 3)

= m
1

(2q − 3) + 1
+ (|G| −m)

1

(2q − 4) + 1
.

Previously it was shown that the equality held if dG (v) ∈ {2q − 4, 2q − 3} for every v ∈ V (G). Suppose that
dG (v) ∈ {2q − 4, 2q − 3} for some v ∈ V (G) and suppose there exist vc ∈ V (G) such that
dG (vc) = ε /∈ {2q − 4, 2q − 3}. Note that |G| −m 6= 0 and by assumption we have dG (v) > 2. Note that

1
dG(vc)+1 > 0. ∑

v∈V (G)

1

d (v) + 1
= m

1

2q − 2
+ (|G| −m)

1

2q − 3
+

1

dG (vc) + 1

≥ m
1

2q − 2
+ (|G| −m)

1

2q − 3
.

Which contradicts the assumption that the equality held. From this we get that∑
v∈V (G)

1

d (v) + 1
≥ m 1

2q − 2
+ (|G| −m)

1

2q − 3
=

2 (q − 1) |G| −m
2 (q − 1) (2q − 3)

,

with equality if dG (v) ∈ {2q − 4, 2q − 3} for every v ∈ V (G). Which, in turn, yields the following:

|G| ≥ δH
∑

v∈V (G)

1

dG (v) + 1
+k+1 ≥ δH

(
m

1

2q − 2
+ (|G| −m)

1

2q − 3

)
+k+1 = δH

(
2 (q − 1) |G| −m
2 (q − 1) (2q − 3)

)
+k+1.

Given that H is Kq, and δH = (q − 1). The above implies

|G| − (q − 1) |G| −m
(2q − 3)

≥ k + 1.
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From this and some algebra, it follows that

|G| ≥ (k + 1)

(
2q − 3

q − 2

)
− m

2 (q − 2)
.

Now consider ‖G‖. It has been established that G is minimal if dG (v) ∈ {2q − 4, 2q − 3}. Once again let m
denote the number of vertices of G with degree equal to 2q − 3. Then m = |{v | dG (v) = 2q − 3}|,
|G| −m = |{v | dG (v) = 2q − 4}|, and

‖G‖ =

(
dG
2

)
|G|

≥ m (2q − 3)

2
+

(|G| −m) (2q − 4)

2

≥
m (2q − 3) +

((
(k + 1)

(
2q−3
q−2

)
− m

2(q−2)

)
−m

)
(2q − 4)

2
= (k + 1) (2q − 3) ,

as desired. �

Frobenius Numbers

Given positive integers that are relatively prime, the Frobenius Number is the largest integer that cannot be
obtained using linear combinations of the given integers. Note that the scalar multiples in the linear
combination must also be positive. Closed form formulas exists for these numbers when dealing with strictly
one positive integer, or two positive integers. There are no closed form solutions for n > 2 where n is the
number of positive, relatively prime numbers given. A proof of the closed form formula for the case n = 2 is
given as follows:

Lemma 3: Prove that if given positive integers n,m where gcd (n,m) = 1, then the Frobenius Number for
ma+ nb = K is nm− n−m.

Proof:

Without loss of generality assume n > m and further suppose that p = n−m. Let a, b ∈ N and consider
ma+ nb = K. Note from substitution we get the following ma+ (m+ p) b = K, and from distributing and
regrouping we get m (a+ b) + pb = K. This formula will be used to analyze what integers can be generated
with choices made for a, b.

Case 1: Let b = 0, then m (a+ 0) + p (0) = ma. Given a selection on a and m we can generate integers that
look like am. This is not very useful since what we are looking for is a speci�c integer that once we step past
that integer on the number line, am will be able to generate all of the following integers. Which is why am
doesn't help us in identifying the Frobenius Number, because if it did, then all integers past a certain point
would be expressible as the product of powers of a and m.

Case 2: Let b = 1, then m (a+ 1) + p (1) = m (a+ 1) + p. Note that a+ 1 can take on any integer value except
0. So m (a+ 1) + p can generate values mk + p where k 6= 0, or namely, m (a+ 1) + p cannot generate p itself.

Case 3: Let b = 2, then m (a+ 2) + p (2) = m (a+ 2) + 2p. Note now that a+ 2 can take on any integer value
except 0 and 1. So m (a+ 2) + 2p can generate values mk + 2p where k 6= 0, 1; or namely, m (a+ 2) + 2p
cannot generate 2p, or m+ 2p. At this point a pattern begins to emerge. Note that continuing this process of
looking at each individual case, in the end we would end up looking at a total of m cases.

11



...

Case m: Let b = m− 1, then m (a+ b) + pb = m (a+ (m− 1)) + p (m− 1). Note that a+ (m− 1) cannot take
on value of 0, 1, . . . ,m− 2, and recall that p = n−m. Since we are interested in when K is not a solution of
m (a+ (m− 1)) + p (m− 1) we will substitute a+ (m− 1) with our last value that a+ (m− 1) cannot equal,
namely m− 2. Thus we get when simplifying the expression

K = m (m− 2) + p (m− 1)

= m (m− 2) + (n−m) (m− 1)

= nm− n−m

And thus we have the closed form formula for identifying the Frobenius Number for two relatively prime
positive integers. �

Theorem 5: Let q ≥ 2, k ≥ 0 be non-negative integers. Then

stab (Kq; k) ≥ (2q − 3) (k + 1) ,

with equality if and only if k = a (q − 2) + b (q − 1)− 1 for some non-negative integers a, b. In particular,

stab (Kq; k) = (2q − 3) (k + 1) for k ≥ (q − 3) (q − 2)− 1.

Furthermore, if G is a (Kq; k)− stable with ‖G‖ = (2q − 3) (k + 1), then G is a disjoint union of cliques K2q−3
and K2q−2.

Proof :

Let a, b be arbitrary, non-negative integers and de�ne G = aK2q−3 + bK2q−2. Then G is a disjoint union of
cliques K2q−3 and K2q−2. By Theorem 4 we have that ‖G‖ = (2q − 3) (k + 1). Solving for k yields:

k =
‖G‖

(2q − 3)
− 1.

Note that

‖G‖ = ‖aK2q−3 + bK2q−2‖
= a ‖K2q−3‖+ b ‖K2q−2‖

= a

(
(2q − 3) (2q − 4)

2

)
+ b

(
(2q − 3) (2q − 2)

2

)
= (2q − 3) (a (q − 2) + b (q − 1)) .

Then

‖G‖
(2q − 3)

− 1 =
(2q − 3) (a (q − 2) + b (q − 1))

(2q − 3)
− 1

= (a (q − 2) + b (q − 1))− 1.

Hence k = (a (q − 2) + b (q − 1))− 1, thus G = aK2q−3 + bK2q−2 is (Kq; a (q − 2) + b (q − 1)− 1)− stable.
Note that the Frobenius number can be identi�ed for {q − 2, q − 1}, the given integers in the formula for k
from G being (Kq; a (q − 2) + b (q − 1)− 1)− stable. Let m = q − 2 and n = q − 1. The Frobenius Number K
is given by the following formula: nm− n−m = K. Then

K = nm− n−m
= (q − 1) (q − 2)− (q − 1)− (q − 2)

= (q − 3) (q − 2)− 1.
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From Theorem 4 we get that ‖G‖ ≥ (2q − 3) (k + 1). Since it has been shown that G = aK2q−3 + bK2q−2 is

(Kq; a (q − 2) + b (q − 1)− 1)− stable it follows that stab (Kq; k) ≥ (2q − 3) (k + 1) , with equality if and only if
k = a (q − 2) + b (q − 1)− 1 for some non-negative integers a, b. Furthermore we get that k is bounded below
by the Frobenius Number de�ned as (q − 3) (q − 2)− 1. �

Future Work

Although much regarding the stability of graphs has been explored, especially regarding complete graphs, there
is still much out there that has not been thoroughly established. As of the publication of this paper apart from
some small value of q, the exact value of stab (Kq; k) could be determined; stab (K7; 7) was the �rst value of q
that was still open. For the most part only general bounds for the size of minimum stable graphs have been
completely explored for families of graphs such as complete graphs and cycles, and a few bounds for paths have
been worked out. Strong equalities for these graphs are rare to come by (most of which are currently where H
is a complete graph) and providing such an equality or even a tighter bound on the size of a minimum stable
graph could provide a rich area for research. Additionally, a question that arises is: if a strong equality can be
established for stab (H; k), is there a unique graph that is described by such an edge set? Currently, however,
my personal interest lies in characterizing the minimum stable graphs for Pn.

Conclusion

In conclusion we have seen some general bounds for the size of minimal (H; k)− stable graphs. Furthermore,
with the exception of a few small values of q, the exact value of stab (Kq; k) can be determined, and a lower
bound for those few values for which the exact value does not exist.

References

[1] N. Alon and J. Spencer, The Probabilistic Method, John Wiley, New York, NY, 2nd edition, 2000.

[2] S. Cichacz, A. Görlich, M. Zwonek, and A. �ak, �On (Cn; k) stable graphs�, Electron J Combin 18 (1)
(2011), #P205.
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